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• Conformal prediction is a generic method for finite-
sample valid distribution-free prediction and can
be applied with most machine learning algorithms
to yield valid prediction regions.

• Given i.i.d. pairs (Xi, Yi) ∼ P, i = 1, . . . , N , for a
distribution P on X × R

(
e.g., X = Rd

)
Goal. Build a prediction set ĈN : X → P(R),
such that for new i.i.d. pair (XN+1, YN+1) :

P
(
YN+1 ∈ ĈN (XN+1)

)
≥ 1− α,

(where the probability is over all N + 1 pairs).

What is conformal prediction?

• Split the sample (Xi, Yi), 1 ≤ i ≤ N into two parts
each with n = N/2 observations.

• Compute the estimator µ̂m(·) based on the first
split.

• Let q̃n,α denote the (1−α)(1+1/n)-th quantile of
the residuals |Yi − µ̂m(Xi)|, on the second split.

• C̃N := {(x, y) : y ∈ [µ̂m(x)− q̃n,α, µ̂m(x) + q̃n,α]}

By exchangeability, we have finite-sample coverage:

P
(
(XN+1, YN+1) ∈ C̃N

)
≥ 1− α.

This is valid regardless of whether µ̂m is a consistent
estimator. In practice, the coverage is close to 1− α.

Split Conformal Prediction

• Suppose µ̂1
m(·), . . . , µ̂K

m(·) are K different estima-
tors with different tuning parameters. They can be
from different estimation methods such as LASSO,
random forest.

⋆ The question we discuss is how to select k̂ ∈
{1, 2, . . . ,K} and construct a valid prediction re-
gion with width close to the smallest.

• We will call coverage guarantee as validity and
smallest width property as efficiency.

Problem Formulation

Input: Data (Xi, Yi), 1 ≤ i ≤ N , coverage probabil-
ity 1− α, and K estimation methods for µ(·).

1. Randomly split the data into three parts each with
n := N/3 observations.

2. Fit the estimators µ̂1(·), . . . , µ̂K(·) on the first split
of the data.

3. Tα,k := (1 − α)(1 + 1/n)-th quantile of |Yi −
µ̂k(Xi)|, residuals in the second split of the data.
The corresponding conformal prediction region is

Ĉk := {(x, y) : y ∈ [µ̂k(x)± Tα,k]}.

4. Set k̂ as the minimizer of Tα,k over 1 ≤ k ≤ K.

5. T ∗
α,k̂

:= (1 − α)(1 + 1/n)-th quantile of |Yi −
µ̂k̂(Xi)|, residuals in the third split of the data.

6. Output:

ĈVFCP
α :=

{
(x, y) : y ∈

[
µ̂k̂(x)± T ∗

α,k̂

]}
.

Efficient First Conformal Prediction (EFCP)

Input: Data (Xi, Yi), 1 ≤ i ≤ N , coverage probabil-
ity 1− α, and K estimation methods for µ(·).

1. Randomly split the data into two parts each with
n := N/2 observations.

2. Fit the estimators µ̂1(·), . . . , µ̂K(·) on the first split.

3. Tα,k := (1 − α)(1 + 1/n)-th quantile of |Yi −
µ̂k(Xi)|, residuals in the second split of the data.
The corresponding conformal prediction region is

Ĉk := {(x, y) : y ∈ [µ̂k(x)± Tα,k]}.

4. Set k̂ as the minimizer of Tα,k over 1 ≤ k ≤ K.

5. Output:

ĈEFCP
α := Ĉk̂ = {(x, y) : y ∈ [µ̂k̂(x)± Tα,k̂]}.

Validity First Conformal Prediction (VFCP)

Coverage Width

VFCP 1− α− 0 min-width + C

√
log(K/δ)

N

EFCP 1− α− C

√
log(K)

N
min-width + 0

1. VFCP requires three splits of the data while
EFCP only requires two splits of the data.

2. Validity and efficiency of VFCP requires some
continuity assumptions on the distributions,
while EFCP only requires i.i.d. data.

Results and comparison of VFCP and EFCP
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Figure 1: Ridge Regression with a Linear Model

Application: tuning-free ridge regression
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