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An Introduction to Conformal

Prediction



Goal

Given i.i.d. pairs (Xi ,Yi ) ∼ P, i = 1, . . . ,N, for a distribution P on

X × R
(
e.g., X = Rd

)
Goal. Build a prediction set ĈN : X → P(R), such that for new i.i.d.

pair (XN+1,YN+1) :

P
(
YN+1 ∈ ĈN (XN+1)

)
≥ 1− α,

(where the probability is over all N + 1 pairs).

Can we do so without any assumptions on the distribution P, and hope

for something nontrivial?
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Split Conformal Prediction

• Split the sample (Xi ,Yi ), 1 ≤ i ≤ N into two parts each with n = N/2

observations.

• Compute the estimator µ̂m(·) based on the first split.

• Let q̃n,α denote the (1− α)(1 + 1/n)-th quantile of the residuals

|Yi − µ̂m(Xi )|, on the second split.

• Define

C̃N = {(x , y) : y ∈ [µ̂m(x)− q̃n,α, µ̂m(x) + q̃n,α]}

By exchangeability, we have finite-sample coverage:

P
(

(XN+1,YN+1) ∈ C̃N

)
≥ 1− α.

This is valid regardless of whether µ̂m is a consistent estimator. In

practice, the coverage is close to 1− α.
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Example

Figure 1: Conformal prediction intervals across several base estimators.1

1Figure 1 of Lei et al. JASA 2018.
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Problem Formulation



Formalizing the problem

• Suppose µ̂1
m(·), . . . , µ̂K

m(·) are K different estimators with different tuning

parameters. They can be from different estimation methods such as

LASSO, random forest.

? The question we discuss is how to select k̂ ∈ {1, 2, . . . ,K} and construct

a valid prediction region with width close to the smallest.

• We will call coverage guarantee as validity and smallest width property as

efficiency.
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Validity First Conformal

Prediction



Validity First Conformal Prediction (VFCP)

Input: Data (Xi ,Yi ), 1 ≤ i ≤ N, coverage probability 1− α, and K

estimation methods for µ(·).

n := N/3.

1. Randomly split the data into three parts each with n observations.

2. Fit the estimators µ̂1(·), . . . , µ̂K (·) on the first split of the data.

3. Define Tα,k as the (1− α)(1 + 1/n)-th quantile of |Yi − µ̂k(Xi )|,
residuals in the second split of the data. The corresponding conformal

prediction region is

Ĉk := {(x , y) : y ∈ [µ̂k(x)± Tα,k ]}.

4. Set k̂ as the minimizer of Tα,k over 1 ≤ k ≤ K .

5. Define T ∗
α,k̂

as the (1− α)(1 + 1/n)-th quantile of |Yi − µ̂k̂(Xi )|,
residuals in the third split of the data.

6. Output: Ĉ VFCP
α :=

{
(x , y) : y ∈

[
µ̂k̂(x)± T ∗

α,k̂

]}
.
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Validity and Efficiency of VFCP

Theorem (Validity of VFCP)

The prediction interval ĈVFCP
α satisfies

P
(

(XN+1,YN+1) ∈ ĈVFCP
α

)
≥ 1− α,

whenever (Xi ,Yi ), 1 ≤ i ≤ N + 1 form an exchangeable sequence of

random variables.

Theorem (Efficiency of VFCP)

Suppose (Xi ,Yi ), 1 ≤ i ≤ N are independent and identically distributed.

Fix δ ∈ [0, 1], under some assumptions, with probability at least 1− δ,

Width(ĈVFCP
α ) ≤ min

1≤k≤K
Width(Ĉk) + C

√
log(4K/δ)

N
.
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Validity First Conformal Prediction (VFCP)

Input: Data (Xi ,Yi ), 1 ≤ i ≤ N, coverage probability 1− α, and K

estimation methods for µ(·).

n := N/3.

1. Randomly split the data into three parts each with n observations.

2. Fit the estimators µ̂1(·), . . . , µ̂K (·) on the first split of the data.

3. Define Tα,k as the (1− α)(1 + 1/n)-th quantile of |Yi − µ̂k(Xi )|,
residuals in the second split of the data. The corresponding conformal

prediction region is

Ĉk := {(x , y) : y ∈ [µ̂k(x)± Tα,k ]}.

4. Set k̂ as the minimizer of Tα,k over 1 ≤ k ≤ K .

5. Define T ∗
α,k̂

as the (1− α)(1 + 1/n)-th quantile of |Yi − µ̂k̂(Xi )|,
residuals in the third split of the data.

6. Output: Ĉ VFCP
α :=

{
(x , y) : y ∈

[
µ̂k̂(x)± T ∗

α,k̂

]}
.
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Efficiency First Conformal

Prediction



Efficient First Conformal Prediction (EFCP)

Input: Data (Xi ,Yi ), 1 ≤ i ≤ N, coverage probability 1− α, and K

estimation methods for µ(·).

n := N/2.

1. Randomly split the data into two parts each with n observations.

2. Fit the estimators µ̂1(·), . . . , µ̂K (·) on the first split of the data.

3. Define Tα,k as the (1− α)(1 + 1/n)-th quantile of |Yi − µ̂k(Xi )|,
residuals in the second split of the data. The corresponding conformal

prediction region is

Ĉk := {(x , y) : y ∈ [µ̂k(x)± Tα,k ]}.

4. Set k̂ as the minimizer of Tα,k over 1 ≤ k ≤ K .

5. Output: Ĉ EFCP
α := Ĉk̂ = {(x , y) : y ∈ [µ̂k̂(x)± Tα,k̂ ]}.
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Validity and Efficiency of EFCP

EFCP is basically data snooping where we are using the same data to

both tune the parameter and report inference. But surprisingly,

Theorem (Validity of EFCP)

If (Xi ,Yi ), 1 ≤ i ≤ N + 1 are independent and identically distributed,

then the efficiency first conformal prediction region ĈEFCP
α satisfies

P
(

(XN+1,YN+1) ∈ ĈVFCP
α

)
≥ 1− α−

√
log(2K ) + 2/3√

N
.

Theorem (Efficiency of EFCP)
From the definition of k̂, we have

Width(ĈEFCP
α ) ≤ min

1≤k≤K
Width(Ĉk) + 0.
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Comparison of VFCP and EFCP

Table 1: Comparison of validity first conformal prediction (VFCP) and

efficiency first conformal prediction (EFCP) in terms of coverage and width.

Coverage Width

VFCP 1− α− 0 min-width + C

√
log(K/δ)

N

EFCP 1− α− C

√
log(K )

N
min-width + 0

1. VFCP requires three splits of the data while EFCP only requires two

splits of the data.

2. Validity and efficiency of VFCP requires some continuity assumptions on

the distributions, while EFCP only requires i.i.d. data.
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Simulations



Simulation 1: Ridge Regression with a Linear Model
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Simulation 2: Ridge Regression with a Non-linear Model
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Results

• VFCP has valid coverage while EFCP undercovers by around 2 percent

across all dimensions.

• Compared with VFCP, EFCP has an improved efficiency ranging from 10

percent to 30 percent across all dimensions, with an average of over 20

percent improvement.

• The standard errors of the coverage for the methods are similar.

• Before computing the ratio of the widths, we find that the standard error

of the widths of EFCP is, on average, over 30 percent smaller than that

of VFCP over 100 repetitions.

• Neither the Linear method nor the Naive method gives valid coverage,

this is expected because the two settings are heteroskedastic models.
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Conclusions



Take home message

1. We have proposed two algorithms to find conformal prediction regions

with the smallest widths among a class of methods;

2. The first method (VFCP) provides finite sample validity and approximate

efficiency;

3. The second method (EFCP) gives finite sample efficiency and

approximate validity;

4. Surprisingly we are not losing much by doing data snooping to tune the

parameter and do inference on the same data with EFCP.

5. The work is done with split conformal method. It would be interesting to

see if it can be applied to Jackknife and other conformal methods.

http://arxiv.org/abs/2104.13871

Thank You!
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