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Prediction Problems



Usual Prediction Problem

Given i.i.d. pairs (Xi ,Yi ) ⇠ P , i = 1, . . . ,N, for a distribution P on

X ⇥ R
�
e.g. X = Rd

�

Goal. Build a prediction set bCN , such that for new i.i.d. pair

(XN+1,YN+1) :

P
⇣
YN+1 2 bCN(XN+1)

⌘
� 1� ↵,

(where the probability is over all N + 1 pairs).

Conformal prediction provides a simple and finite-sample valid solution to

this problem without any assumptions on P .

Such prediction sets can be asymptotically e�cient (i.e., the smallest)

too.
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Today’s talk: Prediction under Covariate Shift

• Suppose we have

(Xi ,Yi )
iid⇠ PX ⌦ PY |X| {z }

labeled data

, 1  i  n and Xi
iid⇠ QX ,| {z }

unlabeled data

n + 1  i  N.

• The covariate distribution in the unlabeled data, QX , is allowed to be

di↵erent from that in the labeled data: covariate shift.

• When PX 6= QX , this relates to transfer learning.

• When PX = QX , this relates to semi-supervised learning.

Goal. Build a prediction set bCN such that

P
�
Yf 2 bCN(Xf )

�
� 1� ↵, (1)

whenever (Xf ,Yf ) ⇠ QX ⌦ PY |X .

– This problem was first introduced by Tibshirani, Barber, Candès,

Ramdas, Conformal prediction under covariate shift, 2020.
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Connections to Missing data and

Semiparametric theory



Missing Data Reformulation

• Choose and fix an arbitrary map R(·, ·) on X ⇥ R. This is like a residual

(conformal score), e.g. |y � bµ(x)|, with bµ from an independent sample.

• For each (Xi ,Yi ) with observed response, define Ri = R(Xi ,Yi ) and

Ti = 0. If response is unobserved, then Ti = 1 and Ri also remains

unobserved.

• The training data then are iid observations (Xi ,Ti , (1� Ti )Ri ) such that

– P(Xi 2 A|Ti = 0) =: PX (A) and P(Xi 2 A|Ti = 1) =: QX (A)

– Ri ? Ti |Xi . This is the missing at random (MAR) assumption.

• Define r↵ such that

P(Ri  r↵|Ti = 1) = 1� ↵. (2)

• This implies that

P(X ,Y )⇠QX⌦PY |X (R(X ,Y )  r↵) = 1� ↵.

• Note that r↵ is a semi-parametric functional here defined by (2).
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Influence function and nuisance parameters

• Note that r↵ satisfies

E[P(Ri  r↵|Ti = 1,Xi )] = 1� ↵.

• Hence r↵ can be written in terms of two nuisance parameters:

– one relating to conditional distribution of R given X

m?(�, x) := P(R  �|T = 1,X = x)

= P(R  �|X = x);

– one relating to conditional distribution of T given X

⇡?(x) := P(T = 1|X = x)/P(T = 0|X = x).

• The best way to estimate r↵ is through the e�cient influence function,

which would give an estimator with second order (product) bias.
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Double Robustness Property

• The e�cient influence function for estimating r↵ when the nuisance

functions are ⇡ and m is

IF(✓, x , r , t;⇡,m) / {t = 0}⇡(x)
h

{r  ✓}�m(✓, x)
i

+ {t = 1}
h
m(✓, x)� (1� ↵)

i
.

• This follows from the semiparametric theory and our missing data

reformulation of the prediction problem under covariate shift.

• The connection to semiparametric theory also highlights the fact that our

IF is doubly robust1 for r↵ in that

E[IF(r↵,X ,R ,T ;⇡,m)] = 0, if either ⇡ ⌘ ⇡? or m ⌘ m?.

• We are now ready to state our methodology for prediction under

covariate shift.
1James M. Robins and Heejung Bang (2005)
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Methodology & Validity



Algorithm: Split Doubly Robust Prediction (Split-DRP)

Input: Data (Xi ,Ti , (1� Ti )Yi ), 1  i  N, coverage probability 1� ↵,

a conformal score map R(·, ·), and estimators b⇡, bm, prediction point x .

1. Randomly split training data into two parts D1 and D2 each with N/2

observations.

2. Fit the estimators b⇡ and bm on the first split of the data and compute the

conformal scores Ri on the second split of the data.

3. Solve for ✓ = br↵ as the solution to PI2 [IF(✓̂,X ,R ,T ; b⇡, bm)] = 0, where

PI2 [IF(✓̂,X ,R ,T ; b⇡, bm)] :=
1

N/2

X

i2D2

{Ti = 0}b⇡(Xi )
⇥

{Ri  b✓}� bm(b✓,Xi )
⇤

+
1

N/2

X

i2D2

{Ti = 1}[ bm(b✓,Xi )� (1� ↵)].

4. Output: The prediction set bC↵ := {y : R(x , y)  br↵}.
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Coverage Validity

Under i.i.d assumption, suppose estimators b⇡, bm are bounded, then with

probability at least 1� �,

P(X ,Y )⇠QX⌦PY |X

⇣
Y 2 bC (br↵;X ) |Dtr

⌘
� 1� ↵

� kb⇡ � ⇡?k2 sup✓ k bm(✓, ·)�m?(✓, ·)k2
P(T = 1)

� C

P(T = 1)

r
log(1/�)

N
.

• First term is the target coverage;

• Second term is for estimating ⇡? and m?;

• Third term is for replacing the population expectation of IF with the

sample expectation.

The product bias term comes from the doubly robust IF.
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Coverage Validity

PAC guarantee; With probability at least 1� �,

P(X ,Y )⇠QX⌦PY |X

⇣
Y 2 bC (br↵;X ) | Dtr

⌘
� 1� ↵

� kb⇡ � ⇡?k2 sup✓ k bm(✓, ·)�m?(✓, ·)k2
P(T = 1)

� C

P(T = 1)

r
log(1/�)

N
.

Unconditional coverage:
���P(X ,Y )⇠QX⌦PY |X

⇣
Y 2 bC (br↵;X )

⌘
� (1� ↵)

���

 kb⇡ � ⇡?k2 sup✓ k bm(✓, ·)�m?(✓, ·)k2
P(T = 1)

+
C

P(T = 1)
p
N
.
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Algorithm: Full Doubly Robust Prediction (Full-DRP)

Input: Data (Xi ,Ti , (1� Ti )Yi ), 1  i  N, coverage probability 1� ↵,

a conformal score map R(·, ·), and estimators b⇡, bm, prediction point x .

1. Fit the estimators b⇡ and bm on the training data and compute the

conformal scores Ri for each i 2 [N].

2. Solve for ✓ = br↵ as a solution to PN [IF(✓̂,X ,R ,T ; b⇡, bm)] = 0, where

PN [IF(✓̂,X ,R ,T ; b⇡, bm)] :=
1

N

NX

i=1

{Ti = 0}b⇡(Xi )
⇥

{Ri  b✓}� bm(b✓,Xi )
⇤

+
1

N

NX

i=1

{Ti = 1}[ bm(b✓,Xi )� (1� ↵)].

3. Output: The prediction set bC↵ := {y : R(x , y)  br↵}.
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Simulations: Comparison between methods

Mean coverage and width Synthetic data Real data

from 500 monte carlo runs Coverage Width Coverage Width

DRP w. full data 0.90 3.29 0.94 27.85

DRP w. splitting 0.90 3.30 0.90 25.79

WCP2 0.97 7.41 0.99 47.71

Table 1: Coverage and width of DRP and WCP on synthetic and real data.

• WCP produces wider width and therefore, tends to over cover by a

considerable amount (by more than 7% over the nominal coverage of

90%). See appendix for a description on WCP.

• Doubly robust prediction with full data and multiple splits have similar

performance with valid coverage.

2Weighted Conformal Prediction, Tibshirani et al. (2020)
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Comparison with existing works

& Extensions



Comparison with existing works

Our method

• Our method does not depend on

the test point (new x) at which

prediction is needed.

• Our method has double robustness

for arbitrary conformal score and

the coverage is guaranteed for any

training method.

• The bias of our coverage is a

product of two errors.

Weighted conformal prediction

Tibshirani et al. 2020

• This method requires the test point

(new x) to be specified in advance.

Lei and Candès, 2021

• Their result on double robustness

holds only under a specific

conformal score: conformal

quantile regression (CQR).

• The bias of their coverage is the

minimum (not product) of two

errors.
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Extensions

• This method can be combined with our previous work on e�ciency first

conformal prediction (EFCP)3 to choose the prediction interval with the

minimum width.

• It can also be extended to provide prediction intervals for counterfactuals

and individual treatment e↵ects (ITE), following Lei and Candès (2021).

• We can relax the MAR assumption to MNAR (corresponding to

Unconfoundedness condition in Causal) using sensitivity analysis.

3Yang and Kuchibhotla (2021)

16
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Prediction intervals for

counterfactuals and individual

treatment e↵ects (ITE)



Causal inference and Counterfactuals

Given N subjects, let Ti 2 {0, 1} be a binary treatment indicator,

(Yi (1),Yi (0)) be the pair of potential outcomes, and Xi be the

covariates.

• Assume
�
Yi (1),Yi (0),Ti ,Xi

� i.i.d.⇠ (Y (1),Y (0),T ,X )

• Predict individual treatment e↵ect (ITE) ⌧i := Yi (1)� Yi (0), unobserved

• For any treated unit i in the study, i.e. with Ti = 1, we construct a

prediction interval bC ITE
i for ⌧i such that bC ITE

i = Y obs
i � bC0(Xi ), where

bC0(x) satisfies

P
�
Y (0) 2 Ĉ0(X ) | T = 1

�
� 1� ↵; (3)

• Such construction has guaranteed coverage4 for ⌧i ,

P
�
Yi (1)� Yi (0) 2 bC ITE

i

�
� 1� ↵.

4See proof in appendix.
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Relaxing the distribution shift

(MAR) assumption



The original covariate shift problem

• Suppose we have

(Xi ,Yi )
iid⇠ PX ⌦ PY |X| {z }

labeled data

, 1  i  n and Xi
iid⇠ QX ,| {z }

unlabeled data

n + 1  i  N.

• The covariate distribution in the unlabeled data, QX , is allowed to be

di↵erent from that in the labeled data: covariate shift.

Goal. Build a prediction set bCN such that

P
�
Yf 2 bCN(Xf )

�
� 1� ↵, (4)

whenever (Xf ,Yf ) ⇠ QX ⌦ PY |X .
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Sensitivity analysis

Sensitivity function:5

exp(�(x , y)) =
PY=y |X=x

QY=y |X=x

QY=0|X=x

PY=0|X=x
.

As a special case when �(x , y) = 0, this goes back to the original

covariate shift problem.

An equivalent way is using the missing data

notation:

�(x , y) = log
P(T = 0|X = x ,Y = y)P(T = 1|X = x ,Y = 0)

P(T = 0|X = x ,Y = 0)P(T = 1|X = x , y)
.

The e�cient influence function is given by

IF(r↵, x , y , r , t; ⌘
?,m?, �?)

/ {t = 0}P(T = 1|X = x ,Y = y)

P(T = 0|X = x ,Y = y)

h
{r  r↵}� P(R  r↵|X = x ,T = 1)

i

+ {t = 1}
h
P(R  r↵|X = x ,T = 1)� (1� ↵)

i
.

(6)

5James M. Robins, Andrea Rotnitzky, and Daniel O. Sharfstein (1999)
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Double robustness and nuisance functions

Formally, let �?(x , y) be the sensitivity function defined by

�?(x , y) = log
P(T = 0|X = x ,Y = y)P(T = 1|X = x ,Y = 0)

P(T = 0|X = x ,Y = 0)P(T = 1|X = x , y)
,

and denote two nuisance functions by
8
<

:
⌘?(x) := log P(T=0|X=x,Y=0)

P(T=1|X=x,Y=0) ;

m?(✓, x) := P(R  ✓|X = x ,T = 1).
(7)

IF(r↵, x , y , r , t; ⌘,m, �?) satisfies the double robustness property that

E
⇥
IF(r↵, x , y , r , t; ⌘,m, �?)

⇤
= 0, (8)

if either ⌘ = ⌘? or m = m?.
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Estimating nuisance functions

Note that the two nuisance parameters can not be directly estimated

from data: 8
<

:
⌘?(x) = log P(T=0|X=x,Y=0)

P(T=1|X=x,Y=0) ;

m?(✓, x) = P(R  ✓|X = x ,T = 1).
(9)

Ghassami et al. (2021)6 provides a general framework to estimate

nuisance parameters, that can establish the regularity and asymptotic

normality of the doubly robust estimator of r↵, see appendix .

6AmirEmad Ghassami, Andrew Ying, Ilya Shpitser, and Eric Tchetgen Tchetgen

(2021)
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Comparison with existing works on sensitivity analysis

Our method

• Our method does not depend on

the test point (new x) at which

prediction is needed.

• Our method has double robustness

for arbitrary conformal score and

the coverage is guaranteed for any

training method.

• The bias of our coverage is a

product of two errors.

Jin, Ren and Candès, 2021

• A di↵erent sensitivity framework.

Robust conformal prediction

• This method requires the test point

(new x) to be specified in advance.

• The bias of their coverage is a first

order bias.

Robust conformal prediction: the

PAC procedure

• Depends on an addition parameter

�.

23



Comparison with existing works on sensitivity analysis

Our method

• Our method does not depend on

the test point (new x) at which

prediction is needed.

• Our method has double robustness

for arbitrary conformal score and

the coverage is guaranteed for any

training method.

• The bias of our coverage is a

product of two errors.

Jin, Ren and Candès, 2021

• A di↵erent sensitivity framework.

Robust conformal prediction

• This method requires the test point

(new x) to be specified in advance.

• The bias of their coverage is a first

order bias.

Robust conformal prediction: the

PAC procedure

• Depends on an addition parameter

�.

23



Comparison with existing works on sensitivity analysis

Our method

• Our method does not depend on

the test point (new x) at which

prediction is needed.

• Our method has double robustness

for arbitrary conformal score and

the coverage is guaranteed for any

training method.

• The bias of our coverage is a

product of two errors.

Jin, Ren and Candès, 2021

• A di↵erent sensitivity framework.

Robust conformal prediction

• This method requires the test point

(new x) to be specified in advance.

• The bias of their coverage is a first

order bias.

Robust conformal prediction: the

PAC procedure

• Depends on an addition parameter

�.

23



Take home message

• We have provided the methodology and theoretical guarantees with an

arbitrary conformal score.

• Our method utilizes a doubly robust influence function, and brings

together conformal prediction, semiparametric statistics and missing

data; As a result, the bias of our coverage is of second order.

• Our result can be easily extended to choosing the prediction interval with

the minimum width and to provide prediction intervals for

counterfactuals and individual treatment e↵ects.

• We have adapted our method to the sensitivity analysis framework, thus

relaxing the MAR/unconfoundedness assumption.

Thank You!

http://arxiv.org/abs/2203.01761

24



Take home message

• We have provided the methodology and theoretical guarantees with an

arbitrary conformal score.

• Our method utilizes a doubly robust influence function, and brings

together conformal prediction, semiparametric statistics and missing

data; As a result, the bias of our coverage is of second order.

• Our result can be easily extended to choosing the prediction interval with

the minimum width and to provide prediction intervals for

counterfactuals and individual treatment e↵ects.

• We have adapted our method to the sensitivity analysis framework, thus

relaxing the MAR/unconfoundedness assumption.

Thank You!

http://arxiv.org/abs/2203.01761

24



Take home message

• We have provided the methodology and theoretical guarantees with an

arbitrary conformal score.

• Our method utilizes a doubly robust influence function, and brings

together conformal prediction, semiparametric statistics and missing

data; As a result, the bias of our coverage is of second order.

• Our result can be easily extended to choosing the prediction interval with

the minimum width and to provide prediction intervals for

counterfactuals and individual treatment e↵ects.

• We have adapted our method to the sensitivity analysis framework, thus

relaxing the MAR/unconfoundedness assumption.

Thank You!

http://arxiv.org/abs/2203.01761

24



Take home message

• We have provided the methodology and theoretical guarantees with an

arbitrary conformal score.

• Our method utilizes a doubly robust influence function, and brings

together conformal prediction, semiparametric statistics and missing

data; As a result, the bias of our coverage is of second order.

• Our result can be easily extended to choosing the prediction interval with

the minimum width and to provide prediction intervals for

counterfactuals and individual treatment e↵ects.

• We have adapted our method to the sensitivity analysis framework, thus

relaxing the MAR/unconfoundedness assumption.

Thank You!

http://arxiv.org/abs/2203.01761

24



Take home message

• We have provided the methodology and theoretical guarantees with an

arbitrary conformal score.

• Our method utilizes a doubly robust influence function, and brings

together conformal prediction, semiparametric statistics and missing

data; As a result, the bias of our coverage is of second order.

• Our result can be easily extended to choosing the prediction interval with

the minimum width and to provide prediction intervals for

counterfactuals and individual treatment e↵ects.

• We have adapted our method to the sensitivity analysis framework, thus

relaxing the MAR/unconfoundedness assumption.

Thank You!

http://arxiv.org/abs/2203.01761

24



Take home message

• We have provided the methodology and theoretical guarantees with an

arbitrary conformal score.

• Our method utilizes a doubly robust influence function, and brings

together conformal prediction, semiparametric statistics and missing

data; As a result, the bias of our coverage is of second order.

• Our result can be easily extended to choosing the prediction interval with

the minimum width and to provide prediction intervals for

counterfactuals and individual treatment e↵ects.

• We have adapted our method to the sensitivity analysis framework, thus

relaxing the MAR/unconfoundedness assumption.

Thank You!

http://arxiv.org/abs/2203.01761

24



References

Lei, Robins, and Wasseerman (2013) Distribution-free prediction

sets. JASA.

Tibshirani, Barber, Candès, and Ramdas (2020) Conformal predic-

tion under covariate shift. NeurIPS.

Lei and Candès (2021) Conformal inference of counterfactuals and

individual treatment e↵ects. JRSSB.

Yang and Kuchibhotla (2021) Finite-sample e�cient conformal

prediction. Arxiv.

Scharfstein, Rotnitzky, and Robins (1999) Adjusting for nonignor-

able drop-out using semiparametric nonresponse models. Journal

of the American Statistical Association.

Bang and Robins (2005) Doubly robust estimation in missing data

and causal inference models. Biometrics.

25



References

Robins (2000) Robust estimation in sequentially ignorable missing

data and causal inference models. Proceedings of the American

Statistical Association.

Ghassami, Ying, Shpitser, and Tchetgen Tchetgen (2021) Mini-

max kernel machine learning for a class of doubly robust function-

als with application to proximal causal inference. Arxiv.

Jin, Ren, and Candès (2021) Sensitivity Analysis of Individual

Treatment E↵ects: A Robust Conformal Inference Approach.

Arxiv.

26



Appendix



Weighted Conformal Prediction

In the weighted conformal prediction method, the prediction interval is

given by

bCn(x) = µ0(x)± Quantile

✓
1� ↵;

nX

i=1

pwi (x)�|Yi�µ0(Xi )| + pwn+1(x)�1

◆
,

(10)

where pw (x) depends on the likelihood ratio between PX and QX , or

⇡?(x).

• When the distribution shift is too “large”, i.e. p!n+1(x) is larger than ↵,

the width becomes 1.

Back to main



Some proofs

Coverage for ITE:

P
�
Yi (1)� Yi (0) 2 bC ITE

i

�

= P(Ti = 1)P(Yi (0) 2 bC0(Xi )|Ti = 1) + P(Ti = 0)P(Yi (1) 2 bC1(Xi )|Ti = 0)

� (1� ↵)
�
P(Ti = 1) + P(Ti = 0)

�

= 1� ↵.

Back to main



Estimating nuisance parameters

Leverage a doubly robust influence function such as IF(· · · ) to generate

an objective function for each nuisance parameter.

Specifically, in the case where one specifies µ = exp(�⌘) and m as

elements of Reproducing Kernel Hilbert Spaces R and M equipped with

the RKHS norms k · kR and k · kM respectively,

bµ = argmin
µ2R

sup
m2M

PN

n
m(✓,X )

⇥
�µ(x) exp(��?(X ,Y )) {T = 0}+ {T = 1}

⇤
�m2(✓,X )

o
� �q

Mkmk2M + �q
Rkµk2R;

bm = argmin
m2M

sup
µ2R

PN

n
�µ(X ) exp(��?(X ,Y )) {T = 0}

⇥
m(✓,X )� {R  ✓}

⇤
� µ2(X )

o
� �m

Rkµk2R + �m
Mkmk2M,

where hyper parameters �q
M,�q

R,�m
R, and �m

M, as well as the kernel

bandwidth are chosen by cross validation.

Back to main
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